Learning Vine Copula Models for Synthetic Data Generation
نویسندگان
چکیده
منابع مشابه
Vine Copula Models with GLM and Sparsity
Vine copula provides a flexible tool to capture asymmetry in modelling multivariate distributions. Nevertheless, its flexibility is achieved at the expense of exponentially increasing complexity of the model. To alleviate this issue, the simplifying assumption (SA) is commonly adapted in specific applications of vine copula models. In this paper, generalized linear models (GLMs) are proposed fo...
متن کاملCopula-Based Approach to Synthetic Population Generation
Generating synthetic baseline populations is a fundamental step of agent-based modeling and simulation, which is growing fast in a wide range of socio-economic areas including transportation planning research. Traditionally, in many commercial and non-commercial microsimulation systems, the iterative proportional fitting (IPF) procedure has been used for creating the joint distribution of indiv...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33015049